Noetherian Connected Graded Algebras of Global Dimension 3
نویسندگان
چکیده
منابع مشابه
Graded algebras and subproduct systems: dimension two
Objects dual to graded algebras are subproduct systems of linear spaces, a purely algebraic counterpart of a notion introduced recently in the context of noncommutative dynamics (Shalit and Solel [5], Bhat and Mukherjee [2]). A complete classification of these objects in the lowest nontrivial dimension is given in this work, triggered by a question of Bhat [1].
متن کاملGrowth of Graded Noetherian Rings
We show that every graded locally finite right noetherian algebra has sub-exponential growth. As a consequence, every noetherian algebra with exponential growth has no finite dimensional filtration which leads to a right (or left) noetherian associated graded algebra. We also prove that every connected graded right noetherian algebra with finite global dimension has finite GK-dimension. Using t...
متن کاملOn co-Noetherian dimension of rings
We define and studyco-Noetherian dimension of rings for which the injective envelopeof simple modules have finite Krull-dimension. This is a Moritainvariant dimension that measures how far the ring is from beingco-Noetherian. The co-Noetherian dimension of certain rings,including commutative rings, are determined. It is shown that the class ${mathcal W}_n$ of rings with co-Noetherian dimension...
متن کاملNoetherian Hopf Algebras
This short survey article reviews our current state of understanding of the structure of noetherian Hopf algebras. The focus is on homological properties. A number of open problems are listed. To the memory of my teacher and friend Brian Hartley
متن کاملFixed Subrings of Noetherian Graded Regular Rings
Rings of invariants can have nice homological properties even if they do not have finite global dimension. Watanabe’s Theorem [W] gives conditions when the fixed subring of a commutative ring under the action of a finite group is a Gorenstein ring. The Gorenstein condition was extended to noncommutative rings by a condition explored by Idun Reiten in the 1970s, called k-Gorenstein in [FGR]. Thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2000
ISSN: 0021-8693
DOI: 10.1006/jabr.2000.8323